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Host  genetic  factors  affecting  COVID-19  disease  susceptibility  and
severity
September 2021—More than a year into the COVID-19 pandemic, an essential question remains unanswered: Why
do  some people  infected  with  SARS-CoV-2  develop  severe  life-threatening  disease  or  die  while  others  are
asymptomatic or have only mild disease symptoms? Severity of COVID-19 has been shown to be negatively
affected by “typical” host factors, such as increasing age, underlying medical conditions, male gender, higher body
mass index, smoking, and lower socioeconomic status. Collectively, however, these traditional risk factors do not
explain all of the variability in disease severity in the general population. Adding to the complexity of host factors,
an international collaborative network of investigators, called the COVID-19 Host Genetics Initiative, has shown in a
large genome-wide association study that many polymorphic loci across the human genome are highly correlated
with COVID-19 disease susceptibility  and severity.  To better  understand the role  of  genetics  in  SARS-CoV-2
infection, the network, a consortium of approximately 3,000 researchers and clinicians, pooled clinical and genetic
data from 49,562 SARS-CoV2–infected patients in 46 studies across 19 countries and six ancestry groups. Two
million control subjects were accrued from a variety of sources, including biobanks, other clinical studies, and
direct-to-consumer genetic companies. This large number of study participants allowed the investigators to amass
sufficient  statistical  power  to  address  the  role  of  human  host  genetic  factors  in  disease  severity.  The  latter  is
defined  categorically  as  infection  without  hospitalization,  hospitalization,  or  critical  illness  requiring  respiratory
support or causing death. By combining this phenotypic information with detailed genotype data, the investigators
identified  13  human  genomic  loci  that  were  associated  with  SARS-CoV-2  infection  susceptibility  (four  loci)  or
disease severity (nine loci). Two of the loci were discovered only after including studies of people of East Asian
ancestry in the meta-analysis, highlighting the value of including diverse populations in human genetic studies. In
the genomic proximity of these 13 COVID-19 disease susceptibility loci were 40 candidate genes, many of which
play a role in immune function or pulmonary pathophysiology, or both. One intriguing loci was near the FOXP4
gene, which is linked to lung cancer. The FOXP4 variant associated with severe COVID-19 increases expression of
the gene, suggesting that inhibiting the gene could be a potential therapeutic strategy. Other loci associated with
severe  COVID-19  included  DPP9,  a  gene  linked  to  lung  cancer  and  pulmonary  fibrosis,  and  TYK2,  which  is
implicated in some autoimmune diseases. Results of the meta-analysis may inform future efforts to identify those
at greatest risk of severe SARS-CoV-2 infection and identify novel therapies and vaccines to ameliorate poor
outcomes.
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Predicting protein structures using artificial intelligence
It has long been theorized that the primary amino acid sequence of any protein should directly predict its active
folded three-dimensional structure that largely dictates the protein’s biological function. However, even though
researchers have known for years the primary sequence of the approximately 20,000 proteins in the human
proteome,  only  about  one-third  of  those  proteins  have  had  their  3D structures  determined  experimentally.

https://www.captodayonline.com/molecular-pathology-selected-abstracts-0921/
https://doi.org/10.1038/s41586-021-03767-x
mailto:andrea.ganna@helsinki.fi


Accurate  computer  models  of  protein  structure  based solely  on primary sequence would  be a  scientific  advance
over  laborious,  resource-intensive  experimental  methods  for  determining  protein  structures,  such  as  x-ray
crystallography  and  cryo-electron  microscopy.  Understanding  how  a  protein  or  protein  complex  is  three-
dimensionally oriented is a key step toward designing drugs that can modulate protein function and, therefore,
treat a myriad of health issues, such as cancer, infections, and inflammatory conditions. Recent articles in Nature
and Science  described advanced computer modeling programs that can predict  the 3D atomic structures of
proteins given their primary sequence. One such artificial intelligence tool, called AlphaFold (DeepMind, London),
has been shown to predict the structure of not only 98 percent of the proteins in the human proteome but also
hundreds of thousands of nonhuman proteins from model organisms. For the human proteome, 58 percent of the
software’s  predictions for  the locations of  individual  amino acids were sufficiently accurate to inform the precise
shape of the protein’s folds. A subset of those predictions (36 percent) were potentially precise enough to detail
atomic features useful for drug design, such as the active site of an enzyme. The approximately 350,000 predicted
protein structures are more than twice as many as had been previously solved by experimental methods. The
AlphaFold tool uses a novel machine-learning approach that incorporates physical and biological knowledge about
protein structure, leveraging multisequence alignments, into the design of the deep-learning algorithm. Open-
source code for the AlphaFold tool is accessible online (https://github.com/deepmind/alphafold), as is the database
of its structural protein predictions (https://alphafold.ebi.ac.uk). Inspired by the AlphaFold tool, an academic team
from  the  University  of  Washington  has  also  created  an  artificial  intelligence  program  for  predicting  protein
structures,  cal led  RoseTTAFold.  Open-source  code  for  RoseTTAFold  is  accessible  online  at
https://github.com/RosettaCommons/RoseTTAFold. The UW team has already used the tool to model more than
4,500 protein sequences submitted by other researchers. RoseTTAFold is nearly as accurate as AlphaFold and
works on not only individual proteins but also complexes of proteins. For example, RoseTTAFold was used to create
a structure database of hundreds of G-protein–coupled receptors, a class of common drug targets. Both programs
use AI to spot folding patterns in vast databases of solved protein structures. The programs compute the most
likely structure of unknown proteins by also considering basic physical and biological rules governing how the
neighboring amino acids in a protein interact. These highly accurate in silico tools for predicting protein structure
could initiate a fundamental paradigm shift in understanding how thousands of unknown proteins function. The
practical applications for this new technology are immense and varied and include drug design and optimization,
creation of novel enzymes for breaking down waste materials such as plastic, and development of crops that are
resistant to viruses or extreme weather. The tools have already been used to better understand the novel viral
proteins encoded by the SARS-CoV-2 virus.
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